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Efficient Treatment of Moderate Amplitude Constraints
for Helicopter Handling Qualities Design Optimization

Vineet Sahasrabudhe* and Roberto Celif
University of Maryland, College Park, Maryland 20742

This paper describes a new technique for the calculation of gradients of constraints associated with
the moderate amplitude criteria of the ADS-33 helicopter handling qualities specifications. The gradients
are calculated using low-order linear approximations to the full nonlinear model of the helicopter. The
low-order models approximate the gradients well and reduce the additional cost of calculating the gra-
dient by a factor of about 50. Most of the reduction in the objective function obtainable using the exact
gradients are retained, with no additional infeasible intermediate designs. The accuracy of linear Taylor-
series expansions of the constraint in terms of the design variables is found to depend on the size of the
changes of each design variable. The accuracy is not improved by using intermediate design variables,
such as reciprocals and cubes of the design variables, but it improves if the bandwidth or derivative
ratios such as Lo, /L, are used as intermediate variables in the expansions.

Nomenclature

F(X) = objective function value
G 1oase(8), Grpen(s) = baseline and perturbed low-order
transfer functions

G(s), Gpen(s) = baseline and perturbed transfer functions

g,(X) = jth constraint

kg, ki = flap and lag spring stiffnesses for main
rotor blades

ky, k, = roll attitude and rate feedback gains

L, Lo, = roll stability and control derivatives

Dok = peak roll rate

P, q, r = aircraft angular velocities in roll, pitch,
and yaw

R = flap-lag blade elastic coupling parameter

u = input displacement vector

u, v, w = aircraft velocity components along the
body axes

Wi, W, = frequency response weighting functions

X = vector of design variables

XD, X1 = upper and lower bound on ith
component of design vector

x = vector of states

x = flight control system state

Bo PBi» Pis P2 = rotor flap degrees of freedom in
nonrotating coordinate system

Adins by = minimum and peak roll attitudes

Lo, Cie» 1sr O = rotor lag degrees of freedom in
nonrotating coordinate system

NG = jth eigenvalue

Nos Nies Mo = inflow degrees of freedom

b, 0, ¢ = aircraft attitudes in roll, pitch, and yaw

Introduction

RECENT trend in helicopter design is the emphasis on
high maneuverability, with handling qualities tailored to
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specific tasks, to increase mission effectiveness and decrease
pilot workload. The steps required to achieve this may lead to
stiff rotors and high-gain flight control systems, which strongly
couple rotor/fuselage and flight control system dynamics. It is
reasonable to assume that an integrated, rather than indepen-
dent, design of rotor and flight control systems will provide
better performance and reduce the risk of closed-loop insta-
bilities. On the other hand, an integrated approach leads to
complex design problems, with large numbers of design vari-
ables and constraints. One tool that may help deal with such
complexity is the use of formal numerical optimization tech-
niques. Reference 1 describes a study for the simultaneous
optimization of rotor and flight control system subject to aero-
elastic stability and handling quality constraints. A simple cou-
pled rotor-fuselage helicopter model with a model-following
flight control system was considered in the study.

This paper addresses a problem identified in Ref. 1, namely,
the large computational effort required to solve integrated ro-
tor/control systems optimization problems of realistic com-
plexity. Formulations with 10 design variables and 30-40 con-
straints can require CPU times of the order of 70-80 h on
typical workstations. A major contributor to the problem is the
handling quality specifications that call for the calculation of
time histories of the aircraft response to pilot inputs. This in-
cludes the criteria for moderate and large attitude change ma-
neuvers in the ADS-33 Handling Qualities specifications.”
Most algorithms for constrained optimization require the cal-
culation of the gradients of the constraints with respect to the
vector of design variables. The gradients are typically calcu-
lated using finite difference approximations, which require that
the time histories of the aircraftresponse be calculated as many
times as there are design variables every time a gradient is
needed. This can translate into hundreds of such calculations
for problems of even modest complexity.

Several methods have been developed to improve the com-
putational efficiency of optimizations involving constraints
based on time histories. One class of methods relies on analytic
and semianalytic expressions for the gradients. There is a large
body of work on the response sensitivity of linear systems,
first addressed by Tomovié.> The methods for linear models
take advantage of the linearity of the governing equations for
both response and sensitivity. As a result, it is possible to gen-
erate sensitivities with respect to any number of system param-
eters for the cost of evaluating just one additional system
model.* Adelman and Haftka® give an overview of several
methods of transient response sensitivity analysis. When there
are many more active constraints than design variables, the
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direct method is used. In this case, the sensitivity equations
are solved together with the dynamic response equations; com-
putational savings are obtained because of the similar form of
the two sets of Eq. (6). When there are a few constraints and
many design variables, an adjoint method is preferred.” Finally,
when the number of response quantities used to calculate the
constraints is smaller than the number of constraints or design
variables, the Green’s function method is the most efficient.®
Several of these methods could be applied in the present study.
However, they tend to require the integration of systems of
differential equations that may be large or expensive to set up.
Therefore, it may be useful to explore alternative methods bet-
ter tailored to the specific features of the problem.

A different approach is to replace the original dynamic re-
sponse constraint with an equivalent constraint. Feng et al.”
did this by integrating the constraint over the time interval.
This constraint is potentially nondifferentiable and can cause
numerical difficulties. In Hsieh and Arora,'’ the constraint is
replaced by a pointwise response constraint enforced at critical
time points, which are those times at which the constraint is
locally close to being infeasible. Grandhi et al." present var-
ious techniques to reduce the computational effort required to
identify the critical points. These techniques are not immedi-
ately useful in the present study because they address a some-
what different problem. In fact, the moderate amplitude con-
straints require that the time histories have a certain shape,
rather than enforcing rigid boundaries on the amplitude, such
as limits on its peaks. Also, the shape is defined by parameters
that are available after the first peak and the first valley of the
time-history plot. Therefore, any algorithm used to identify the
position of subsequent peaks or valleys, such as those of Ref.
11, does not significantly help reduce the computational effort.

Another class of methods deals with the high computational
cost by creating a sequence of approximate problems, the so-
lutions of which converge to the optimum of the original prob-
lem. This can be accomplished by carrying out Taylor-series
expansions of objectives and constraints about the current de-
sign point” in terms of the design variables themselves or of
intermediate variables. Applications of this and other approx-
imation concepts to structural optimization are reviewed in
Ref. 12. Linear or, more rarely, quadratic Taylor-series expan-
sions in terms of the design variables are implemented as part
of general purpose optimization software.'*'” Taylor-series ex-
pansions in terms of intermediate variables® have been used
infrequently outside structural optimization, because these de-
sign variables are discipline and problem dependent. In partic-
ular, little or no research has been devoted to the identification
of suitable intermediate variables for many helicopter-related
problems.

This paper has the following objectives:

1) To describe a new technique for an efficient calculation
of the gradients of constraints associated with moderate atti-
tude change specifications in ADS-33. This technique is based
on calculating approximate values of the gradients from ap-
propriate low-order, linear approximations to the complete
nonlinear dynamics of the helicopter.

2) To present results of an integrated rotor-flight control sys-
tem optimization with aeroelastic and handling qualities con-
straints, in which the exact moderate amplitude constraints in
pitch and roll are replaced by the approximations mentioned
earlier.

3) To explore the replacement of moderate amplitude con-
straints with polynomial approximations based on Taylor-series
expansions and to determine what expansions are most likely
to be accurate over a wide region of the design space.

Formulation of the Optimization Problem
The helicopter model consists of a rigid fuselage and a main
rotor composed of four rigid blades with offset hinges and root
springs. Quasisteady aerodynamics with a dynamic inflow

model is used. The coupled rotor-fuselage-inflow equations
are written in first-order form as

X=fx, ut) (1)

where x and u contain the pitch settings for the main and tail
rotors. A small perturbation model is obtained by linearizing
Eq. (1) about a trimmed equilibrium position. This results in

Ax = AAx + BAu (2)

where A denotes a small perturbation from trim. This is the
model used for frequency response calculations. The flight
control system architecture is similar to that of the UH-60
ADOCS (Ref. 16), based on a model-following concept.

The optimization is formulated to seek a vector X of design
variables that minimizes an objective function F(X), subject to
behavior constraints g;(X) = 0,j =1, ..., m, and side con-
straints (X;), = X, = X)), i=1, ..., N, where m is the number
of constraints, N is the number of design variables, and (X)),
and (X;), are the limits on the design variable X,. Ten design
variables are used in the study: the root spring stiffnesses of
the rotor, the flap-lag elastic coupling parameter R (Ref. 17),
selected feedback gains, and selected poles in the command
model that describes the desired dynamics of the helicopter.

Aeroelastic and handling qualities constraints are imposed
on the design. Aeroelastic constraints enforce rotor aeroelastic
stability by requiring that the real parts of \; of the linearized
state matrix A corresponding to the rotor modes be negative.
The handling qualities constraints enforce compliance with a
representative subset of the ADS-33 specifications” for hover.
Two types of objective function are used. When the optimizer
cannot obtain a feasible design, the objective function is for-
mulated as the sum of the values of the violated constraints.
When the design is feasible, the objective function chosen is
a weighted sum of the swashplate displacements and rates for
two predefined moderate amplitude maneuvers; this weighted
sum is representative of the control effort. Additional details
concerning the analysis model and the design optimization
problem can be found in Ref. 1.

A limitation of this study is that actuator saturation is not
included in the aircraft model. Saturation plays a role in the
ability to satisfy the moderate amplitude response specifications
and, therefore, it should be considered for a complete treatment
of the problem. On the other hand, Ref. 1 showed that saturation
was unlikely to occur for the configurations analyzed in that
study. Because the same configurations are analyzed in the pres-
ent study, the limitations of the model should not affect signif-
icantly the results presented in this paper.

Treatment of Moderate Amplitude Constraints

Definitions

The moderate amplitude attitude change specifications (or
quickness specifications) need to be transformed into inequal-
ity constraints before they can be used in the optimization.
Only the treatment of one specification for roll is described
here. This is specification 3.3.3, for the target acquisition and
tracking mission task element in hover and low-speed flight.
The constraints associated with the pitch specifications are
treated similarly.

The first step is to define the distance 9 between the point
representative of the helicopter on the specification chart and
the curve that limits the level 1 region (Fig. 1). This distance
is given by

D=V — Abin)” + [Ve — (Pe/AdpI]? 3)

where Ad,,, and pu/Ad, are the x and y coordinates of the
representative point on the chart, and x,; and y,; are the coor-
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Fig. 1 Definition of some quantities used in the formulation of
the constraints and their gradients.

dinates of the intersection of the perpendicular from that point
to the level 1 curve. The quantities Ad,,, and p,/Ad,. are
determined from the helicopter response to a step-like lateral
cyclic input, ¢y and py are the maximum roll angle and roll
rate following the pilot input, respectively, and Ad., is the
roll angle of the first valley of the response (or the final value
if the response is not oscillatory).” The specification is trans-
formed into a constraint g(X) by requiring that g(X) = a9 =
0, where a = —1 if the point is in the level 1 region, and o =
+1 if it is not. The gradient of g(X) is given by

_Jasl
e - ) - )

- { 0T pu/Ad) | _aT
I(po/ Ay aX;

IAD min
e @

where X; is the ith design variable, and the size of the vector
is equal to the total number of design variables N. Several
quantities that appear in Eq. (4) are shown graphically in Fig.
1. The terms 9D /(pu/Ady) and ID/dAd,,, are simple geo-
metric quantities that can be calculated numerically very
quickly. The terms 9(pu/Ad,)/0X, and 0Ad,,./0X; are the
changes in the specification parameters, because of changes in
the design variables, for a fixed pilot input. These terms may
be expensive to calculate because they depend on the changes
of the time histories of the aircraft response to pilot inputs.
Therefore, an objective of the present study is to explore strat-
egies to calculate these sensitivities more efficiently.

The assumption will be made that the sensitivities of the
state matrix A and of the control matrix B in Eq. (2) are known.
It is reasonable to assume that in an optimization with handling
qualities constraints these sensitivities would have to be cal-
culated anyway to evaluate the effects on the small-amplitude
change specifications. In that case, baseline and perturbed fre-
quency responses would be available for use with the moderate
amplitude constraints considered in this study at no additional
cost. Efficient methods to calculate the sensitivities of the lin-
earized system for helicopter problems are presented in Ref.
18.

Approximations Using Low-Order Linear Models

Low-Order Transfer Function Fits

The quickness specifications are closely related to the band-
width of the helicopter, which is the frequency at which the
phase margin is 45 deg or the gain margin is 6 dB (Ref. 2).
For example, for a simple first-order model of roll rate dynam-
ics, the parameter p,/Ad is equal to the bandwidth. Also, the
quickness requirements blend with the small-amplitude (band-
width) requirements as the attitude changes approach the lower
values of the definition of moderate. Whether or not a heli-

copter satisfies the quickness specifications is heavily influ-
enced by its frequency response characteristics in a band that
roughly extends from 1 to 10 rad/s. Therefore, the idea
is to calculate approximate values of d(pu/Ady)/dX; and
AP min/0X; in Eq. (4) from a low-order linear model that fits
the frequency response of the helicopter over that limited fre-
quency band. The procedure is composed of the following
steps:

1) Calculate the frequency response of the baseline config-
uration and fit a low-order model over a suitable frequency
band, e.g., from 0.5-1 to 10-15 rad/s.

2) Integrate the low-order model to find the response to a
prescribed pilot input, and determine Adun and pu/Adu.
These will be the baseline values for the purpose of calculating
the gradients.

3) Perturb X, calculate the frequency response of the per-
turbed configuration, and again fit a low-order model over the
chosen frequency band.

4) Integrate the perturbed low-order model to find the re-
sponse to the same pilot input, and determine Ad,,;, and
Do/ Adp. These will be the perturbed values.

5) Use baseline and perturbed values to calculate the sen-
sitivities (pu/Adu)/0X; and dAdmin/0X, using finite difference
approximations.

The choice of the transfer function types for this study is
based on a survey of approximate transfer functions described
in Ref. 19, which cover several aircraft sizes and rotor config-
urations. The roll transfer function can then be written in the
form

b (s) k(s + 2)

Gl = T G P + 2Uw,s + o )
or, in shorthand notation:
Gy =2 M ©6)

0,.(5)  (PIL: ]

Here, k, p, z, {, and w,, are variables that are adjusted to fit the
frequency response to that of the full model. Two simpler ver-
sions of Eq. (5) are also used in this study, namely, a transfer
function with three poles and no zeros, and one with two poles
and one zero.

Let G(jw) denote the baseline frequency response ¢/0,., ob-
tained using the full linearized model of the helicopter. Let
G jo) be the frequency response of the perturbed design,
also calculated using the complete linearized model, and ob-
tained by perturbing one of the design variables. Then, the
low-order model frequency response G,(jw) is fitted to G( jw)
by adjusting the values of the free parameters to minimize the
error €, defined by

e= > Wi(0){Re[G(w)] — Re[G ()]}

+ D Wiw){Im[G(w)] — Im[G(w)])? (7)

where the summations extend over a suitable number of fre-
quency points jw,. The weight functions W (w,) and Wi(w,)
can be used to focus on desired frequency bands. Let G pase(s)
be the result of the fit to the baseline transfer function. The
process is repeated a second time by fitting the low-order trans-
fer function to Gp(jw). This results in the approximate
G pen(s). The time histories required for the determination of
the baseline and the perturbed values of Ad,, and pu/Ady
are then obtained by integrating the state-space realizations
corresponding to G pase(s) and G peq(s), respectively. The gra-
dients in Eq. (4) are calculated using finite differences.

Low-Order State-Space Models

Low-order models can also be extracted from the full-order
linearized model of Eq. (2) using condensation. If the state
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vector Ax is partitioned into vectors of states Axxto be retained
and Ax. to be condensed out, and the system matrices are
partitioned accordingly, one has

A.X:R _ ARR ARC AxR BR
e Ve | o A SR

Condensation is based on setting A¥- = 0 and solving for
Axc This results in

AxXp = (Age — ARCAE‘CI‘ACR)AxR + (Bg — ARCAE‘CI‘BC)AM
= A, Axy + BAu 9)

This method is more convenient to implement than the transfer
function fit because it only requires simple matrix manipula-
tions. Additionally, the resulting models are multi-input multi-
output and retain cross-coupling information, whereas the low-
order fits are single-input single-output only. On the other
hand, it is not obvious which states should be retained to obtain
good approximations over the frequencies of interest.

The state vector for the full linear model in Eq. (2) consists
of 34 states, that is

Ax=[uvwpgqgrd 0¥ BB Bi B Bo Bu- Bn Bz o Cic
(i Go Co Cl(- Cn Cz Ao Nie Ny xi_n xi-z) x?) x£_4) xfﬂ xf-G)]T (10)

In this study we consider three low-order linear models ob-
tained through condensation, with 4, 10, and 14 states, respec-
tively. The vector Axg,, of states for the 14-state model is

Axru=[pgd 8 xi_l)xig) xi-}) x£_4) xf-j) xf-G) Blc le Bic le]T (1

The state vector Axg,, for the 10-state model is the same as
Ax g4, minus the flap states. The state vector Axz, for the four-
state model is the same as Axg,, minus the flap states and the
six flight control system states x”. These low-order models
are used in the same general way as those obtained from fre-
quency response fits. Thus, the corresponding equations of mo-
tion are integrated to evaluate the moderate amplitude con-
straint for both the baseline and the perturbed designs, and the
gradients are calculated using finite difference approximations.

The accuracy of the approximate gradients will depend, for
both types of low-order models, primarily on three parameters.
These are 1) the frequency band over which the low-order
model fits the full-order model, 2) the number of poles and
zeros (for the low-order fits) or the number and type of states
(for the state-space models), and 3) the size of the perturba-
tions used in the numerical calculation of the gradients. Two
other parameters may play a role when low-order fits are used,
namely, the weighting functions W, and W, in Eq. (7), and the
convergence criterion used to stop the error minimization in
Eq. (7). The techniques presented in this section are compatible
with any flight dynamic simulation and do not require changes
in the computer programs implementing the simulation. Be-
cause the quickness specification value tends to depend on the
frequency response in the 0.5-1 to 10 rad/s range, the rest of
this study concentrates on this range. More precisely, the fit is
performed over the interval from 0.3 to 20 rad/s, with the
interval from 0.3 to 10 rad/s emphasized using the weighting
functions W, and W.. These values have been found to produce
the most accurate and repeatable results.

Taylor-Series Expansions

The optimization problem is solved using a feasible sequen-
tial quadratic programming (FSQP) algorithm.'* As part of the
solution process used by FSQP, objective function and con-
straints are expanded in linear or quadratic Taylor-series about
the current design. The expansions are updated at each itera-
tion. It is sometimes convenient to perform the Taylor-series

expansions not directly in terms of design variables but rather
in terms of intermediate variables that are functions of the
design variables. The goal is to obtain higher-quality expan-
sions that are accurate over a larger portion of the design space
and, therefore, require less frequent updates (each update of a
linear expansion requires a gradient calculation). It would then
be possible to relax the limits to the maximum changes of the
design variable at each iteration, required to prevent the design
from entering portions of the design space where the Taylor-
series expansions are too inaccurate.

The FSQP implementation of Ref. 14 is limited to expan-
sions in terms of the design variables, unless the Taylor-series
expansions are supplied by the user. A limited amount of ex-
perimentation was performed to determine whether the use of
intermediate variables could be beneficial. Recall that if X° is
the current design vector, the linear Taylor-series expansion of
a constraint g(X) in terms of the design variables is given by

N

g0 = gx9) + O X

X, — X7 12
24 5x, ( ) (12)

X=x}

If we define a vector Y of intermediate variables generically
as Y, = h(X)), then the Taylor-series expansion of Eq. (12) can
be rewritten in terms of Y as

g0 =g + S| v, - vy

= a7, Y=Y

N
ag 0X;
= g(Y") + = =
s E[ax,ay,}

i=1

h(X) — h(X?
x,o[ X)) X 13)

X’,:
Note that g(Y°) is the value of the constraint at the current
design, therefore, g(Y°) = g(X°). The intermediate design var-
iables considered in this study are reciprocal design variables,
Y: = 1/X;, and cubic design variables, Y; = X;. Two additional
types of Taylor-series expansions have been considered in this
study. They can both be written in the general form

d
() = g(I°) + d—f (- 19 (14)

where [ = I(X) is an intermediate design variable, and [° =
I(X°) is the value of I at the current design. The types of I
considered in the study for the roll constraint are

l Lel(
(X)) = T

P

LX) = opw (15)

where wgw is the bandwidth.” The stability and control deriv-
atives L, and L, are obtained from a six-degree-of-freedom
model of the helicopter, derived as shown by Egs. (8) and (9),
by retaining rigid body velocities, rates, and Euler angles. The
intermediate variable /; has been selected because —1,0;. is the
steady-state value of p following a step input of lateral cyclic
of magnitude 0,. in hover, using a simple one-degree-of-free-
dom linearized roll model. The variable [, has been selected
because wpw = Pp/Admn for the same first-order model. In
other words, both choices of / correspond to parameters that
play an important role in the response of the helicopter. The
derivative in Eq. (14) is given by

N
N 98 X
o & X, ol

dg

dl (16)

x=x°

The first term in the summation is the ith component of
Vg(X). The second is the derivative of X; with respect to [, or
l,, and it can be calculated using finite difference approxima-
tions. If the sensitivity of Eq. (2) has already been calculated,
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then that derivative is already available and can be reused in
Eq. (16). Once g(I°) and dg/dl|,_p are available, the constraint
for any design X can be calculated directly from Eq. (14) if
the relationships wgw(X) or Ly, /L,(X) are known. In this study,
such relationships are assumed to be available from the con-
sideration of bandwidth constraints. If they are not, then the
cost of calculating [, = wgw or I, = Ly /L, for a given design
X must be taken into account. In general, any of these Taylor-
series expansions can be used without changes in the computer
programs that implement the flight simulation. Finally, when
comparing Eqs. (12-14), the gradient Vg(X) is calculated nu-
merically from the full nonlinear model of the helicopter; the
low-order linear approximations previously described are not
used.

Results

The results presented in this section refer to a soft-in-plane
hingeless rotor helicopter. The solidity of the main rotor is o
= 0.07 and its angular velocity is 424 rpm. The weight coef-
ficient is C,, = 0.005. The rotor has four blades and the blade
airfoil has a lift curve slope of a = 6.0 and a profile drag
coefficient of ¢, = 0.01. The rotor is attached to a fuselage
with a gross weight of 4855 Ib. The c.g. of the fuselage is 0.2R
below the the hub.

Approximate Gradients

Figure 2 compares exact and approximate values of three
components of the gradient of the roll quickness constraint.
The exact values are obtained using the nonlinear model of
the helicopter, the approximate values using the linear approx-
imation of Eq. (5), that is a transfer function with three poles
and one zero. The finite difference step is of 0.1 and 0.5% for
Figs. 2a and 2b, respectively. The components correspond to
the following three design variables: 1) X, = k, = kg, the roll

_ 20 4 0 Designvariable 1: k =k, " 4 g
% v Design variable 5: a, // .
g 0 o Design variable 8: k, 722
] 7
D O ///
© -50 %%~/
z -20 -
o = - g /
S R
o -40 ST D
p I Y
c
2 -20% 7+50%
® 60 = -
5 +20%
. i
-60 -40 -20 0 20
a) Gradient from non-linear model
20 o Design Variable 1: kp=k 2 =
) v Design Variable 5: a s
ko]
g 0 o Design Variable 8: kg &
o 7
S 77
S -50%577 4,
z s Ve
5 . /
£ oy s
S .40 z
E P O s /
@ -20 6/0 /7 +50%
s 60 | ,
5 +20%
. i
-60 -40 -20 0 20
b) Gradient from non-linear model

Fig. 2 Derivatives of roll moderate amplitude constraint with
respect to three design variables for five different designs; com-
parison between values from full nonlinear model and from three-
pole/one-zero low-order model. Perturbation a) 0.1 and b) 0.5%.

attitude and rate feedback gains, linked to be identical; 2) X5
= a,, one of the poles of the command block in the feedforward
path; and 3) X = k,, the stiffness of the lag spring of the rotor
blades. Five values are shown for each variable, one for each
of five designs corresponding to the first five iterations of an
actual optimization. Figure 2 is drawn in such a way that if
the exact and the approximate values were identical they
would appear on the diagonal of the figure. Also shown are
sectors corresponding to relative differences of =20 and
*50%. The gradient components corresponding to different
design variables can have different units and, therefore their
respective magnitudes are not directly comparable; this should
be kept in mind when examining figures like Fig. 2.

Figure 2 shows that all of the components of the gradient
have the correct sign. The best agreement with the exact values
from the full nonlinear model is for those with respect to X,.
The worst agreement is for the derivatives with respect to Xs,
which are very small; this, together with actual values of the
lag frequency that are typically around 0.7-0.8, indicates that
the gradient of the constraint would not be very sensitive to
changes in Xs. From the results of Fig. 2, and others not pre-
sented in this paper, it appears that a step size of 0.1% is the
best for the finite difference calculation of the gradients.

Figure 3 compares the roll quickness specification values for
perturbed designs calculated using the full nonlinear model and

Table 1 Computer times for gradient calculation

Type of CPU time, Relative CPU cost,
model s full model = 100
Full nonlinear 308 100.0
Two-pole/one-zero 7 2.3
Four-state 5 1.6
Ten-state 8 2.6
Fourteen-state 12 3.9
2.5 i
Level 1 :
3-pole + zero
2.0 Nonlinear ™ model‘ e
Level 2 model | b-state
3_1'5 15 \ Baseline mo?el
— N
o Level 3 14-state .7 k
1.0 model | ~ ]
7 3pole
2-pole + zero model 10-state
0.5 . model model
0.0 i
0 10 20 30 40 50 60
a) A(l)min (deg)
2.5
Level 1
2.0 : g_]—ggéel, Nonlige|ar
* i mode =
Level 2 . Spole zero

Po/B0,
&

Level 3 )
1.0 2—p%lli geTero \ \ ~
14-state
05 A;,'j%tggf ... modei '1r?1-oscti?atle o
0.0 : :
0 10 20 30 40 50 60
b) A¢ . (deg)

Fig. 3 Roll moderate amplitude specification values for baseline
and perturbed designs: a) perturbation of X, = k,, and b) X5 = a,.
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Table 2 Design variables: initial and final values

Linear models— final designs

Design Initial Nonlinear Two poles/ Three poles/
variable design final design Three poles one zero one zero
ky X 1.0e-04 5.390(1.12) 5.372(1.119) 5.533(1.14) 5.505(1.13) 5.505(1.13)
k; X 1.0e-05  1.147(0.70)  1.345(0.72) 1.249(0.71) 1.2499(0.715)  1.2499(0.715)
R 0.900 0.898 0.921 0.820 0.820
ks ko —0.0288 —0.0398 —0.02835 ~0.2825 ~0.2825
k., 0.5332 0.3546 03632 0.4252 0.4252
kq 0.0692 0.0619 0.0659 0.1589 0.1589
k, k, —0.0194 —0.0376 —0.0188 —0.0182 —0.0182
a, a» 0.8827 0.6125 0.8307 0.8412 0.8412
as a, 0.7982 0.8435 0.7913 0.7925 0.7924
Objective 20.102 6.633 7.040 12.959 9.082
aFlap and lag frequencies shown in parentheses = in./rev.
5 20 @ . g 005 —
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§ 10 - ®— —— L % -0.1 \“ nonlingglr[ model
(>U ; S - !39‘_5:.@__5 :g T -
3 5 o f - T -0.15 (a) 1
g .0l iy 2 K. o) O, o)
§ nonlinear model & -02 ’ '
: 0 2 4 6 8 10
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£ ~Ful
Fig. 4 Iteration history of objective function. = 0.02 -, 0] onfinear model -
c
8 0
the various low-order models. Figure 3a refers to perturbations g / AE\B/E/H’_‘E*-{]
of X,, and Fig. 3b refers to perturbation of Xs. The perturbed g 002 [rp g ~
designs are obtained starting from the baseline design, using € 004 WSTE/ / /&
. | . ]
the full nonlinear model; next, the relevant components of the © / L
gradients are calculated using the full nonlinear model and % -0.06 fodg-ioe B, o]
various low-order approximations. These components are mul- g 0.08 L (@
tiplied by a preassigned change of the design variable to obtain £ O, o)
the total increments in Ad i, and pu/Ady because of a change -0.1 :
in X, (upper plot) or X5 (lower plot). Finally, these increments 0 2 Iteratio?ws 8 10
are added to the baseline values of Adyin and pu/Ady to ob-
tain the perturbed points shown in the plots. Figure 3a indi- 0
cates that in most cases the low-order approximations give
qualitatively correct predictions, and in some cases the quan- = @
titative agreement is also good. The low-order models are used cul @ o]

to predict the perturbations only. In fact, using them to also
calculate the baseline values of Adin and pyu/Ady sometimes
gives inaccurate results.

Table 1 compares the average CPU times required to cal-
culate one component of the gradient. These times should be
added to that of the baseline constraint evaluation. The addi-
tional work necessary to obtain the gradients using the low-
order approximations is clearly a minuscule fraction of that
required using the full nonlinear model.

Optimization with Approximate Gradients

This section presents the results of an optimization for the
case of hover, formulated with control effort as the objective
function. The constraint gradients, except for the roll and pitch
quickness constraints, are obtained using the full nonlinear
model of the helicopter. The gradients of the roll and pitch
constraints are calculated using the nonlinear model and the
three low-order transfer function fits. When the nonlinear
model is used, the results are identical to those of Ref. 1.
Figure 4 shows the iteration history of the objective function.
All of the points in the plot are from full nonlinear analyses.
The four formulations converge to different optima. This is not
surprising because the approximate constraints are obtained by

“nonlinear mode! T

b) [, @]

et Cess

Roll Small Amplitude Short Term Constraint

-4 ¢ . ] \
b, o] - S
.5 !
0 2 4 6 8 10
Iterations

Fig. 5 Comparison of selected constraint iteration histories for
optimization using full nonlinear gradients and approximate gra-
dients.

truncating the dynamics of the helicopter and not by a local
approximation of the mathematical behavior of the constraint.
Therefore, the approximation will not improve as the optimum
is reached. The best results are obtained with a transfer func-
tion with three poles, but substantial reductions are also ob-
tained using the other low-order fits. The intermediate designs
are feasible. Table 2 shows initial and final values of the design
variables using approximate and full gradients. The three-pole
approximation achieves most of the reduction in objective
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function that could be obtained from the full nonlinear model.
In practice, any of the low-order approximations could be used
at the beginning of the optimization before switching to the
full nonlinear model at the end to achieve the full improve-
ment.

Figure 5 shows the iteration histories of some constraints.
The roll moderate amplitude constraint is never active or vio-
lated. The same is true for the pitch constraint, not shown in
the figure. Both are calculated using the full nonlinear model,
but their gradients are calculated using the low-order approx-
imations (except for the full nonlinear model curve in the fig-
ure). The approximations do not take the optimizer into the
infeasible region. The regressive lag stability constraint be-
comes active when the two-pole/one-zero and the three-pole/
one-zero approximations are used, and nearly active when the
full model is used. Both this constraint and its gradients are
always computed using the full nonlinear model. The results
for the approximate models are different because the FSQP
optimizer selects different designs, since the shape of the entire
feasible region is changed by the approximate constraints.
Other optimization algorithms were not explored in this study.
However, the behavior would likely be similar if penalty func-
tion methods were used, because of their tendency to funnel
down the middle of the feasible region. On the other hand, if
feasible direction-type methods were used, the iteration his-
tories of objective function, constraints, and design variables

1 T
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i O AL
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Fig. 6 Iteration histories of selected design variables.

would likely be identical in the exact and the approximate
cases, unless the moderate amplitude roll (or pitch) constraint
became active. In fact, these methods reach the optimum by
moving along the constraints, and only the roll (or pitch) con-
straint would be changed by the approximations. The roll small
amplitude constraint also remains satisfied for all models. The
use of the one-zero/two-pole approximation moves the design
much closer to the level 1 boundaries than the other approxi-
mations; all of them move the design closer than when the full
model is used. Figure 6 shows the iteration histories of selected
design variables. The optimizer places the desired roll pole a,
in the feedforward block to a noticeably higher value than
when the full model is used. The pitch axis pole shows a much
smaller change. The parameter R converges to values between
0.82-0.92.

Taylor-Series Expansion of Roll Moderate Amplitude Constraint

Figure 7 compares the roll constraints calculated from the
full nonlinear model and from the linear Taylor-series expan-
sion. Only one design variable at a time is perturbed, i.e., the
summation in Eq. (12) contains only one term. For Fig. 7a the
variable is kg, whereas for Fig. 7b it is k.. In each case, the
expansions are carried out around four designs, chosen among
those that occurred during the optimization runs described in
the previous section. Each expansion is evaluated with pertur-
bations X; — X2 of 0.1, 0.5, 1, and 5% of the current value
X{ of the design variable (all indicated as small changes), of
10, 20, and 40% (intermediate changes) and 80% (large). Fig-
ure 7a shows that linear expansions predict the correct sign of
the constraint for all values of k. The accuracy is very good
for small and intermediate perturbations and reasonable for
large perturbations. Hence, relatively large move limits can be
allowed for kg in the roll constraint during the optimization.
Figure 7b refers to the design variable k, and shows that for
large moves away from the current design the sign of the linear
Taylor-series approximation to the constraint can be wrong.
This implies that a violation would be predicted when the con-
straint is satisfied, or vice versa. For changes of small and
intermediate size the sign is correct, but the accuracy deteri-
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Fig. 7 Taylor-series expansions of roll moderate amplitude con-
straint: a) kg and b) k..
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Fig. 9 Roll moderate amplitude constraint for different designs.

orates as the size increases. The expansions with respect to kg
and k, are representative of the best and the worst performance
of the linear Taylor-series approximation to the roll quickness
constraint in this problem. On the basis of these results, the
recommended maximum move limit is about 40% of the value
of each design variable.

Figure 8 again compares the roll quickness constraint pre-
dicted by a Taylor-series approximation and by the full non-
linear model. As in Fig. 7, k; and k, are perturbed. Data for
three types of expansions are presented, namely, expansions in
terms of direct design variables (same as Fig. 7), of reciprocal,
and of cubes of design variables. The perturbations are all 80%
of the current value X}, corresponding to the large perturba-
tions of Fig. 7. Using these two types of intermediate variables
does not extend the range of validity of the Taylor-series ex-
pansions. The situation is different when [, = L, /L, and I, =
wpw are used. Figure 9 shows some results for the former case.
The three plots of Fig. 9 have been constructed by taking a
representative design and perturbing three design variables by
amounts corresponding to intermediate and large perturbations.
Then, Admin, Ppr/Ady, Lo, /L, and the roll constraint corre-
sponding to each of the perturbed designs have been calculated
and the representative points plotted in the figure. As each
design variable is perturbed, most of the points tend to fall on
a straight line if Aduin, pu/Ady, and the constraint are plotted
as a function of L, /L, The points corresponding to changes
in Xg = k; are collapsed into almost one point in all the plots,
but they fall on a straight line when the x axis scale is ex-
panded. The straight lines on the plots have been drawn man-
ually to show the trends. Figure 10 has been obtained exactly
as Fig. 9, except that wew has replaced L, /L,. The same trends
as in Fig. 9 are evident in Fig. 10. Together, they suggest that

50
[s]
40 oM, 2
(o)
a
B 30 >
3 [u:
"c <o
& 20
<
° a
10
~
0 =
o Design variable 1: kp = k¢
2 e ¢ Design variable 5: a,
o Design variable 8: k
g O
&
g 15
o
Lo
oS ET o(;ﬂ
1
1.5
<
s
2 o
[e]
© L
§ ¢ e B
= e
a 05 <
g ° 4
g . o v
L))
-g O,g;/ O
g ~
£ -05
6 7 8 9 10 1"
0y, (rad/sec)

Fig. 10 Roll moderate amplitude constraint for different designs.



738 SAHASRABUDHE AND CELI

5
w A
£ 1 +20% 7
% +50% L7
ht - -20 %
g\ ': / e ~ - °
T L s e
= 0.5 / =
DAY
pracy
E .
g o
g @ k=k (mer) o k=k (Large)|i
— - - P ¢ P o
c - 7
= — v a_({Inter) v a, (Large)
£ .05 bl ' ‘
3 B Kk (inter) O k (Large)
c 5 4
3 . :
[&]
-05 0 0.5 1

Constraint value from full non-linear model

Fig. 11 Comparison of exact and approximate values of roll
moderate amplitude constraint; /,(X) = Ly, /L,

c
o
r— ! /
g ® K=k, (nter) / +20%
% 1 v a (nter) +50 t% Y iy P - 7
8 n k; (Inter.) / Ve v 20%
% O k =k (Large) s - 2
EIY 7 -
ﬁ 0.5 v a, (Large) P i
4 .

S Tk (Large) /. //E _-50%
£ .
g 0
= 7
< T
£ -
£ -
£ -05 |~
@
c
8 Il

-0.5 0 0.5 1

Constraint value from full non-linear model

Fig. 12 Comparison of exact and approximate values of roll
moderate amplitude constraint; intermediate variable /,(X) =

W pwe

linear Taylor-series expansions in the intermediate design var-
iables [, and [, can be accurate for larger moves away from
the current design. This is confirmed by Figs. 11 and 12 that
compare the exact values of the quickness constraint with
those obtained from linear Taylor-series expansions in /, and
L, respectively. Figure 11 shows that when L, /L, is used as
intermediate variable and X, = k, = k;, or X5 = a, are perturbed
by even large amounts, the expansion predicts the correct sign
of the constraint and the quantitative agreement is reasonable.
This is not true for changes in Xg = k;, which mostly affects
the rotor lag frequency. Substantial violations are predicted
when instead the constraint is satisfied. Because in the present
study this Taylor series was not used in an actual optimization,
the precise effect of this inaccuracy cannot be determined.
However, since rotor lag frequency is not likely to affect sig-
nificantly the roll (or pitch) moderate amplitude constraint, Xs
might simply be dropped from the vector of design variables
when evaluating this constraint. No such problems occur when
the intermediate variable is the bandwidth wgw, as shown in
Fig. 12: the Taylor-series expansion predicts the correct sign
of the constraint and the quantitative agreement is reasonably
good.

Conclusions

This paper describes a new technique for the efficient cal-
culation of gradients of constraints associated with the mod-
erate amplitude attitude change criterion of the ADS-33 han-
dling qualities specifications. The gradients are calculated
using low-order linear approximations to the full nonlinear
mathematical model of the helicopter. No modifications to ex-
isting flight dynamics simulation codes are required to make

use of this technique. The sensitivities of the full-order line-
arized model with respect to the design variables are assumed
to be available. This includes the sensitivities of state matrix
A, control matrix B, and bandwidth wgw. A limitation of this
study is that actuator saturation is not included in the simula-
tion model.

The main results of this study are as follows:

1) Low-order linear models can be obtained either in transfer
function form through a curve fit in the frequency domain, or
in state-space form by condensation. Both types can provide
good approximations to the gradients of the moderate ampli-
tude constraint. These models are not sufficiently accurate for
the calculation of the perturbed constraint, which should be
obtained by adding the precise baseline value of the constraint
to the increment calculated using the approximate gradients.

2) The technique presented in this paper reduces, by a factor
of about 50, the additional cost of calculating the gradient in-
formation once the baseline value is available, compared with
traditional one-sided finite differences.

3) When used in an actual optimization, these approximate
gradients make it achieve most of the reduction in the objective
function that could be obtained using the full nonlinear model
and do not cause any additional infeasible intermediate de-
signs.

4) The accuracy of linear Taylor-series expansions of the
constraint depends on the size of the changes of each design
variable; a change of 40% or less will usually give reasonable
accuracy. There is no improvement in accuracy if the expan-
sions are in terms of intermediate variables, such as reciprocals
and cubes of the design variables. The accuracy improves if
the bandwidth or the derivative ratio LQI(/L,, are used as inter-
mediate variables, in which case perturbations of 80% (or pos-
sibly larger) can become acceptable.
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